TAUBERIAN THEOREMS

BY

A. MEIR

ABSTRACT

Tauberian constants and estimates are calculated for the difference of two linear transforms from the form (1.1) of the same function satisfying Tauberian conditions.

Applications for number-sequences, and connections with previous results are shown.

1. Introduction. Denote by T(y) ($y \ge 0$) some integral-transform of a function f(x) ($-\infty < x < +\infty$) of the form

(1.1)
$$T(y) \equiv T_{\beta}(y) = \int_{-\infty}^{+\infty} f(x)d(1-\beta(y-x))$$

where $\beta(x)$ is a function of bounded variation on $-\infty < x < +\infty$. In addition to Tauberian theorems, which give information about $\lim_x f(x)$ if $\lim_y T(y)$ exists, it is possible to find estimates concerning $|T_{\beta}(y) - f(x)|$ even if neither the existence of $\lim_x T(y)$ nor that of $\lim_x f(x)$ is assumed. Studies of such problems concerning number-sequences and the usual Abel-transform originated with the paper of Hadwiger [5], concerning integral-transforms with Agnew [2], Delange [3], Rajagopal [10], Jakimowski [8]. In Section II of the present paper we shall obtain a simple proof of estimates of $|T_{\beta}(y) - T_{\gamma}(\eta)|$ where T_{β} and T_{γ} are transforms satisfying certain general conditions, y and η tend to $+\infty$ with a connection on $y - \eta$. Our result contains as special cases many known results.

2. Tauberian Constants. The main result is the following:

THEOREM 1. Let f(x) $(-\infty < x < +\infty)$ be a real or complex-valued, continuous, almost everywhere differentiable function satisfying

$$\lim_{x \to -\infty} f(x) = 0$$

(2.2)
$$f'(x) = O(1)$$
 for $-\infty < x < +\infty$

(2.3)
$$\int_{-\infty}^{x} f'(t)dt = f(x)$$

(2.4)
$$\overline{\lim_{x \to +\infty}} |f'(x)| = L < +\infty.$$

Received February 10, 1963.

Let $\beta(x)$ and $\gamma(x)$ be real functions of bounded variation over $-\infty < x < +\infty$, satisfying

(2.5)
$$\lim_{x \to -\infty} \beta(x) = \lim_{x \to -\infty} \gamma(x) = 0, \qquad \lim_{x \to +\infty} \beta(x) = \lim_{x \to +\infty} \gamma(x) = 1$$

(2.6)
$$\begin{cases} \beta(x) \in L_1(-\infty, 0) & ; \quad \gamma(x) \in L_1(-\infty, 0) \\ (1 - \beta(x)) \in L_1(0, +\infty); \quad (1 - \gamma(x)) \in L_1(0, +\infty) \end{cases}$$

(2.7)
$$\int_{-\infty}^{0} \int_{-\infty}^{u} \left| d\beta(x) \right| du < +\infty, \quad \int_{-\infty}^{0} \int_{-\infty}^{u} \left| d\gamma(x) \right| du < +\infty$$

and let y = y(t) and $\eta = \eta(t)$ be positive increasing function with $\lim_{t \to \infty} y(t) = +\infty$, $\lim_{t \to \infty} \eta(t) = +\infty$ and

(2.8)
$$\lim_{t \to +\infty} (y(t) - \eta(t)) = q, \qquad -\infty < q < +\infty$$

then

(2.9)
$$\overline{\lim_{t \to +\infty}} |T_{\beta}(y) - T_{\gamma}(\eta)| \leq L \cdot A_q$$

where

(2.10)
$$A_q = \int_{-\infty}^{+\infty} |\beta(x) - \gamma(x-q)| dx,$$

and A_q is the best possible constant satisfying (2.9), since there exists a real function f(x), with $0 < L < +\infty$ and such, that in (2.9) the equality sign holds.

Before giving the proof we mention some particular examples.

EXAMPLE (i). Let $\{s_k\}$ $(k \ge 1)$ $(s_k = a_1 + a_2 + ... + a_k)$ be a real or complex sequence satisfying $ka_k = O(1)$, and define

(2.11)
$$\beta(x) = e^{-e^{-x}}, \quad \gamma(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

(2.12)
$$f(x) = \sum_{k=1}^{n} a_k + a_{n+1} \frac{x - \log n}{\log(n+1) - \log n}, \quad \log n \le x < \log(n+1)$$

If we denote $e^{\eta} = \tau$, $e^{-e^{-y}} = \rho$, then it is easy to see that $T_{\gamma}(\eta) = s_{\tau} + o(1)$ and $T_{\beta}(y) = (1 - \rho) \sum_{k=1}^{\infty} s_k \rho^k + o(1)$.

Thus we have by Theorem 1

$$\lim_{t \to +\infty} \left| s_{[t]} - A(\rho) \right| \leq L \left(\int_{-\infty}^{-\log q} e^{-e^{-x}} dx + \int_{-\log q}^{+\infty} (1 - e^{-e^{-x}}) dx \right)$$

where $L = \overline{\lim_{k \to \infty}} |ka_k|$, $A(\rho)$ is the usual Abel-transform of the series $\{s_k\}$, $\tau \to +\infty$, $\rho \to 1$, $\tau(1-\rho) \to q$ as $t \to +\infty$. This is an equivalent form of a result of Agnew [7].

EXAMPLE. (ii). Let $\{s_k\}$, f(x), $\gamma(x)$ and L defined as in example (i). Let for $\alpha > 0$,

(2.13)
$$\beta(x) = \begin{cases} 0 & x < 0 \\ (1 - e^{-x})^{\alpha} & x \ge 0 \end{cases};$$

If we denote $e^{y} = u$, $e^{\eta} = \tau$, and $f(\log x) = s(x)$ we have

(2.14)
$$T_{\gamma}(\eta) = s_{[\tau]} + o(1)$$
$$T_{\beta}(y) = \frac{\alpha}{u^{\alpha}} \int_{0}^{u} s(x)(u-x)^{\alpha-1} dx \equiv C^{(\alpha)}(u)$$

 $C^{(\alpha)}(u)$ being the Cèsaró-transform of order α of the function s(x).

Now by Theorem 1

$$\overline{\lim_{u\to\infty}} \quad \left|s_{[\tau]} - C^{(\alpha)}(u)\right| \leq L \cdot A_q^{(\alpha)}$$

where $\tau \to +\infty$, $u \to +\infty$, $\tau u^{-1} \to q > 0$, as $t \to +\infty$, and

$$A_q^{(\alpha)} = \begin{cases} \int_0^{-\log} (1 - e^{-x})^{\alpha} dx + \int_{-\log q}^{+\infty} (1 - (1 - e^{-x})^{\alpha}) dx & \text{if } q < 1\\ \log q + \int_0^{\infty} (1 - (1 - e^{-x})^{\alpha}) dx & \text{if } q \ge 1 \end{cases}$$

This is a result analogous to a theorem of V. Garten [8] and A. Jakimowski [9].

EXAMPLE (iii). The [J, f(x)]-transformations were defined in [6] as follows: Let $\phi(x)$ be a function of bounded variation in [0, 1], $\phi(0 +) = \phi(0) = 0$, $\phi(1 -) = \phi(1) = 1$. The [J, f(x)]-transforms of a sequence $\{s_n\}$ $(n \ge 1)$ $(s_n = a_1 + \ldots + a_n)$ is

(2.15)
$$F_{\phi}(x) = \sum_{k=1}^{\infty} s_k \frac{x^k}{k!} \int_0^1 u^x \left(\log \frac{1}{u} \right)^k d\phi(u)$$

If we denote $x = e^{y}$, $u = e^{-e^{-v}}$, $\phi(u) = \beta(v)$, we have

(2.16)
$$F_{\phi}(x) = F_{\phi}(e^{y}) = \sum_{k=1}^{\infty} s_{k} \int_{-\infty}^{+\infty} \frac{e^{kv}}{k!} e^{-e^{v}} d(1 - \beta(y - v))$$

Now, if $ka_k = O(1)$, and $B(x)^{l} = \sum_{k=1}^{\infty} s_k (x^k/k!) e^{-x}$ is the usual Borel-transform of the sequence $\{s_k\}$, it is easy to show (see for example my paper [10]) that

(2.17)
$$\lim_{x \to +\infty} |B(x) - s_{[x]}| = 0$$

thus

32

 $B(e^v) = O(v)$ as $v \to +\infty$.

Therefore, if $\beta(v)$ satisfies the conditions of Theorem 1, it follows by (2.7) that the integral

$$\int_{-\infty}^{+\infty} B(e^v) d(1-\beta(y-v))$$

is absolutely convergent, and thus we may write (2.16) in the equivalent form

(2.18)
$$F_{\phi}(x) = \int_{-\infty}^{+\infty} B(e^{\nu}) d(1 - \beta(y - \nu)).$$

Also, by (2.12) and (2.17),

$$\lim_{v\to+\infty} |B(e^v) - f(v)| = 0;$$

therefore, it is easily seen that

(2.19)
$$\lim_{y \to +\infty} \left| F_{\phi}(x) - T_{\beta}(y) \right| = 0,$$

where

$$T_{\beta}(y) = \int_{-\infty}^{+\infty} f(v)d(1 - \beta(y - v)).$$

Now, if $\gamma(x)$ is as in (2.11), $e^{\eta} = \tau$, and $L = \overline{\lim}_{k \to +\infty} |ka_k|$, by Theorem 1 and (2.19)

(2.20)
$$\overline{\lim_{t \to +\infty}} \left| s_{[\tau]} - F_{\phi}(x) \right| \leq L \cdot A(\phi, q)$$

where $\tau \to +\infty$, $x \to +\infty$, $\tau x^{-1} \to q > 0$ as $t \to +\infty$, and

$$A(\phi,q) = \int_{-\infty}^{-\log q} \left| \phi(\bar{e}^{e^{-v}}) \right| dv + \int_{-\log q}^{+\infty} \left| 1 - \phi(\bar{e}^{e^{-v}}) \right| dv$$

This is a more general result than Jakimowski's in [8], namely we do not suppose here that $\phi(x)$ is a monotonic function of x in [0,1], but only that the conditions of Theorem 1 are satisfied concerning $\beta(x) = \phi(e^{-e^{-x}})$. The monotonicity of $\phi(x)$ clearly implies our assumptions.

EXAMPLE. (iv). Let $\beta(x)$ be as in (2.13) and $\gamma(x) = e^{-e^{-x}}$. Then if $e^{y} = u$, $e^{-e^{-y}} = \rho$, we have

$$T_{\beta}(y) = C^{(\alpha)}(u) \qquad \text{as in (2.14)} T_{\gamma}(\eta) = A(\rho) \qquad \text{as in example (i)}$$

[March

Now, by Theorem 1

$$\overline{\lim_{t\to\infty}} |C^{(\alpha)}(u) - A(\rho)| \leq L \cdot A(q,\alpha)$$

where $u \to +\infty$, $\rho \to 1$, $u(1-\rho) \to q > 0$ if $t \to +\infty$,

$$A(q,\alpha) = \int_{-\infty}^{0} e^{-qe^{-x}} dx + \int_{0}^{\infty} \left| (1-e^{-x})^{\alpha} - e^{-qe^{-x}} \right| dx.$$

If $q \leq \alpha$ the sign of absolute value in the second integral can be removed, since $e^{-u} \geq 1 - u$ for all $u \geq 0$. In particular, if $\alpha = q = 1$,

$$\overline{\lim_{t \to \infty}} \left| C^{(1)}(u) - A(\rho) \right| \leq L \cdot A_1$$

where $u \to +\infty$, $\rho \to 1$, $u(1 - \rho) \to 1$ as $t \to +\infty$, and an easy calculation yields

$$A_1 = 1 - C,$$

C being Euler's constant.

Concerning transforms $T_{\beta}(y)$ with a monotonic increasing function $\beta(x)$ we shall be able to prove the much more general result:

THEOREM 2. Let $\beta(x)$ be an increasing function satisfying the conditions of Theorem 1 and let $s(x) \equiv f(\log x)$ be a real, or complex valued slowly oscillating function for x > 0 (i.e $s(x) - s(y) \rightarrow 0$, if $x \rightarrow +\infty$, $xy^{-1} \rightarrow 1$). Then for every fixed $q_{1} - \infty < q < +\infty$,

(2.21)
$$\overline{\lim_{t \to \infty}} \left| f(\eta) - T_{\beta}(y) \right| \leq L^* \cdot A_q^*,$$

where $y = y(t) \rightarrow +\infty$, $\eta = \eta(t) \rightarrow +\infty$, $y - \eta \rightarrow q$ as $t \rightarrow +\infty$,

(2.22)
$$L^* = \lim_{\delta \downarrow 0} \lim_{y \ge x + \delta \to \infty} \left| \frac{f(y) - f(x)}{y - x} \right|$$

and

(2.23)
$$A_{q}^{*} = \int_{-\infty}^{q} \beta(x) dx + \int_{q}^{+\infty} (1 - \beta(x)) dx.$$

Moreover, the constant A_q^* in (2.21) is the best possible in the same sense as in Theorem 1.

REMARK. It is well known, that if f(x) satisfies conditions of Theorem 1, then $s(x) \equiv f(\log x)$ is slowly oscillating and L^* in (2.22) is \leq than L in (2.4). By (2.23), A_q^* has the same value as A_q by Theorem 1 for the special case $T_y(\eta) = f(\eta)$. Thus, for increasing $\beta(x)$ Theorem 2 is a more general result.

Proofs. In the proof we shall need the following modification of the lemma of Agnew [9].

1963]

LEMMA. Let H(t, x) be a real function of the variables

 $t, x(t > 0; -\infty < x < +\infty)$

satisfying the following conditions

$$\int_{-\infty}^{+\infty} |H(t,x)| dx \text{ exists for } t > 0,$$
$$\lim_{t \to \infty} \int_{-\infty}^{c} |H(t,x)| dx = 0 \quad \text{for every } c,$$

and suppose

$$\overline{\lim_{t\to+\infty}}\int_{-\infty}^{+\infty} |H(t,x)| dx = A < +\infty.$$

Let g(x) be any function of the real variable x, $(-\infty < x < +\infty)$ satisfying g(x) = O(1) for $-\infty < x < +\infty$, and suppose

$$\overline{\lim_{x\to+\infty}} |g(x)| = L < +\infty.$$

Then for

$$T(t) = \int_{-\infty}^{+\infty} H(t,x)g(x)dx$$

we have

(2.24)
$$\overline{\lim_{t \to +\infty}} |T(t)| \leq L \cdot A,$$

and the constant A is the best possible in the sense that there exists a real function g(x) with $0 < L < +\infty$ such that in (2.24) both sides are equal.

The proof of the lemma is the same as the very similar lemma of Rajagopal [10].

Proof of Theorem 1. By (1.1) we have

$$T_{\beta}(y) - T_{\gamma}(\eta) = \int_{-\infty}^{+\infty} f(x)d\{\gamma(\eta - x) - \beta(y - x)\};$$

by (2.3)

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{x} f'(u) du d\{\gamma(\eta - x) - \beta(y - x)\}.$$

By (2.2), (2.6) and (2.7) we may interchange the order of integrations and by (2.5) we obtain

$$= \int_{-\infty}^{+\infty} f'(u) \{\beta(y-u) - \gamma(\eta-u)\} du$$
$$\equiv \int_{-\infty}^{+\infty} f'(u) H(t,u) du,$$

with y = y(t), $\eta = \eta(t)$. Now it is easy to check that H(t, u) satisfies the conditions of the Lemma; thus we have

$$\overline{\lim_{t\to\infty}} |T_{\beta}(y) - T_{\gamma}(\eta)| \leq L \cdot A_q,$$

where

$$A_q = \lim_{t\to\infty} \int_{-\infty}^{+\infty} |\beta(y-u)-\gamma(\eta-u)| du,$$

and by (2.8) and Lebesgue's well known theorem

$$= \int_{-\infty}^{+\infty} |\beta(x) - \gamma(x-q)| dx.$$
 Q.E.D.

Proof of Theorem 2. First, by a slight modification of a theorem of R. Schmidt [11], for all x, y satisfying $|x - y| \ge \delta > 0$

(2.25)
$$|f(x) - f(y)| \leq K_{\delta} \cdot |x - y|,$$

K being dependent only on δ . Thus the lim defining L* in (2.22) certainly exists.

In order to prove our Theorem it is enough to show that (2.21) holds; the fact that A_q^* is the best possible constant satisfying (2.21) follows from the remark after Theorem 2. Let now be $\varepsilon > 0$ given; define $\delta > 0$, $x_0 > 0$ such, that for $x \ge x_0$, $y \ge x_0$, $|x - y| \ge \delta$ (by (2.22))

(2.26)
$$|f(x) - f(y)| < (L^* + \varepsilon) |x - y|,$$

and for $x \ge x_0$, $y \ge x_0$ and $|x - y| \le \delta$ (since $f(\log x)$ is slowly oscillating)

$$(2.27) |f(x) - f(y)| < \varepsilon$$

Now

$$f(\eta) - T_{\beta}(y) = \int_{-\infty}^{+\infty} (f(\eta) - f(x))d(1 - \beta(y - x))$$
2.28)

$$= \int_{-\infty}^{x_0} + \int_{x_0}^{\eta-\delta} + \int_{\eta-\delta}^{\eta+\delta} + \int_{\eta+\delta}^{+\infty} = I_1 + I_2 + I_3 + I_4$$

Let $y, \eta > x_0 + \delta$. By (2.25)

$$I_{1} = O\left(\int_{-\infty}^{x_{0}} (\eta - x)d(1 - \beta(y - x))\right)$$
$$= O\left\{(\eta - y)(1 - \beta(y - x_{0})) + \int_{y - x_{0}}^{+\infty} ud\beta(u)\right\}$$

and by (2.5) and (2.6) we obtain easily

(2.29) $I_1 = o(1) \quad \text{as } y \to \infty.$

1963]

By (2.26)

$$\left|I_{2}\right| \leq (L^{*} + \varepsilon) \int_{x_{0}}^{\eta - \delta} (\eta - x) d(1 - \beta(y - x)) \leq (L^{*} + \varepsilon) \int_{y - \eta}^{\infty} d\beta(u) \int_{y - \eta}^{u} dt$$

(2.30)

$$= (L^* + \varepsilon) \cdot \int_{y-\eta}^{\infty} (1 - \beta(u)) du$$

In the same way

(2.31)
$$|I_4| \leq \left(\int_{-\infty}^{y-\eta} \beta(u) du\right) \cdot (L^* + \varepsilon).$$

By (2.27)

(2.32)
$$|I_3| \leq \varepsilon \int_{y-\eta-\delta}^{y-\eta+\delta} d\beta(u) \leq \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary we have by (2.28) – (2.32), as $t \to \infty$, $y \to \infty$, $y \to \eta \to q$,

$$\overline{\lim_{t \to \infty}} |f(\eta) - T_{\beta}(y)| \leq L^* \cdot A_q$$
Q.E.D.

REFERENCES

1. Agnew, R.P., 1949, Abel transforms and partial sums of Tauberian series, Ann. of Math., 50, 110-117.

2. Agnew, R.P., 1952, Integral transformations and Tauberian Constants, Trans. Amer. Math. Soc., 72, 501-518.

3. Delange, H., 1950, Sur les théorèmes inverses des procédées de sommation des séries divergentes, Ann. Sci. Ecole Norm. Sup (3) 67, 99-160.

4. Garten, V., 1951, Uber Taubersche Konstanten bei Cesaróschen Mittelbildung, Comm. Math. Helv., 25, 311-335.

5. Hadwiger, H., 1944, Uber ein Distanztheorem bei der A-Limitierung, Comm. Math. Helv., 16. 209-214.

6. Jakimovski, A., 1960, The sequence-to-function analogues to Haussdorff transformation, *Bull. Res. Counc. of Israel*, 8F, 135-154.

7. Jakimovski, A., 1961, Tauberian Constants for Haussdorff transformations, Bull. Res. Counc. of Israel, 9F, 175-184.

8. Jakimovski, A., 1962, Tauberian Constants for the [J, f(x)]-transformation, *Pacific Journ.* of Math., 12, 567–576.

9. Meir, A., 1963, Tauberian Constants for a family of transformations, *Annals of Math.*, (to appear).

10. Rajagopal, C.T., 1956, A generalization of Tauber's theorem and some Tauberian constants III, *Comm. Math. Helv.*, **30** 63-72.

11. Schmidt, R., 1925, Über divergente Folgen und lineare Mittelbildungen, Math. Zeitsch., 22, 89–152.

THE HEBREW UNIVERSITY OF JERUSALEM