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ABSTRACT

Tauberian constants and estimates are calculated for the difference of two
linear transforms from the form (1.1) of the same function satisfying Taub-
erian conditions.

Applications for number-sequences, and connections with previous results
are shown.

1. Introduction. Denote by T(y) (y = 0) some integral-transform of a function
f(x) (— o0 <x < + o) of the form

(LD TWM=T0) =] fxdl-py-=x)

where f(x) is a function of bounded variation on — o0 < x < + . In addition
to Tauberian theorems, which give information about lim, f(x) if lim, T(y) exists,
it is possible to find estimates concerning | T(y) = f (x)| even if neither the exis-
tence of lim, T(y) nor that of lim,f(x) is assumed. Studies of such problems
concerning number-sequences and the usual Abel-transform originated with the
paper of Hadwiger [5], concerning integral-transforms with Agnew [2], De-
lange [3], Rajagopal [10], Jakimowski [8]. In Section II of the present paper we
shall obtain a simple proof of estimates of | Ty(y) — T,(n)| where T; and T, are
transforms satisfying certain general conditions, y and # tend to + oo with a
connection on y — 7. Our result contains as special cases many known results.

2. Tauberian Constants. The main result is the following:
THEOREM 1. Let f(x) (— o <x< + ) be a real or complex-valued,
continuous, almost everywhere differentiable function satisfying

@1 lim f(9)=0
2.2) ') =0(1) for — o0 <x< + oo
@.3) [ roa=ge

(2.4) xﬁ|f’(x)|=L< + 0.
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Let B(x) and y(x) be real functions of bounded variation over — 00 < x < + o,
satisfying

2.5  lim f(x)= lim 3(x)=0, lim p(x)= lim y(x) =1

x> — 00 x> =00 x—>+ 00 x>+ o0

B(x)eLy(— ,0) 5 y(x)eLy(— ,0)
(2.6) {

(1= Bx)e Ly, + ©); (1 —=y(x))eLy(0, + )

2.7 Jiw Jiw|dﬁ(x)|du< + ©, fiwfjwldy(x)]du< +

and let y=y(¢) and n=5(t) be positive increasing function with lim,_, ,,y(t) = + o0,
lim,, #(t) = + oo and

(2.8) lim (y(t)—n())=q, —w<g< + ™
then

(2.9) Jim [T,0)-Tym)| <L+ 4,

where

@.10) A= [ 180 =305 = ) s,

and A, is the best possible constant satisfying (2.9), since there exists a real function
f(x), with 0 < L < + o0 and such, that in (2.9) the equality sign holds.
Before giving the proof we mention some particular examples.

ExaMpLE (i). Let {s;} (k=1) (s, =a; +4a, + ... + a,) be a real or complex
sequence satisfying ka, =0(1), and define

(2.11) Bx)=e*", y(x)= {? ;‘;8

x — logn
"*!log(n + 1) —logn’

2.12) f(x)= X a; +a logn < x <log(n +1)
k=1

If we denote e"=1, e~ =p, then it is easy to see that T,{(n) = s + o(1)
and Ty(y) = (1 = p) T2 50" + 0(1).

Thus we have by Theorem 1

~log g . + o0 _
lim |s;p—A(p)| L (f e dx + f (1—e ¢ T)dx )
t~ +

- —~log g
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where L = lim,_, .| ka,|, A(p) is the usual Abel-transform of the series {s;},
T2 +w,p—-1,7(1—-p)—qast— + co. This is an equivalent form of a result
of Agnew [7].
ExaMPLE. (ii). Let {s;}, f(x), y(x) and L defined as in example (i).
Let for o > 0,
0 x<0
(2.13) B(X) - {(1 - e“x)a X ; 0,

If we denote &” = u, e" = 7, and f(logx) = s(x) we have

Ty(”) = Sgq + o(1)
(2.14) o
?;3(}’) = e fo s(x)(u — x)“_ldx = C(a)(“)

C(u) being the Ceésard-transform of order « of the function s(x).
Now by Theorem 1

lim s~ CO@w)| SL- A
t=> 0

1

where 1 — + 0, u—> + 0,14~ =+ qg>0,ast— + o, and

—log + 00
f (1 = e %%dx +f (I-(1—e™%dx ifg<t
Az(;a) — 0 —~loggq

logqg + f (1-—(1—-e%dx ifgz1
0

This is a result analogous to a theorem of V. Garten [8] and A. Jakimowski [9].

ExAMPLE (iii). The [J,f(x)]}-transformations were defined in [6] as follows:
Let ¢(x) be a function of bounded variation in [0,1], ¢(0 +) = ¢(0)=0,
$(1 =)= ¢(1) = 1. The [J,f(x)]—transforms of a sequence {s,} (n = 1)
(s,=a;+..+a,)is

0 k 1 k
2.15) Fy(x) =k§1sk x_k-! f u* (log -1,17) do(u)

0

If wedenote x =€, u =€ ", ¢p(u) = f(v), we have

+ ekv

0
(2.16) Fyx)=Fy&€)= X s, —re <l — By —v))
k=1 —@ k!
Now, if ka, =0(1), and B(x)l= T2 si(x*/k!)e™® is the usual Borel-transform of
the sequence {s,}, it is easy to show (see for example my paper [10]) that
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(2.17) lim |B(x) — sml =0

X+ + 00
thus
B(e"y=0(v) asv— + 0.

Therefore, if f(v) satisfies the conditions of Theorem 1, it follows by (2.7) that
the integral

f_ Be)d(1 — By — 1)

e}

is absolutely convergent, and thus we may write (2.16) in the equivalent form

2.18) R = [ B = B - o).

Also, by (2.12) and (2.17),
lim |B(e") — f(v)| =0;

v+ 00
therefore, it is easily seen that
(2.19) lim |Fy(x)— T,(»|=0,
y2+oo
where

1,0) = [ ot = py - o).

Now, if p(x) is as in (2.11), e"= 1, and L =Tim,., ; ,,| ka, |, by Theorem 1 and
(.19)

(2.20) fim |5 = F()| S L~ A4q)
t— + 00

1

where 1> + o0, x> + 00,7x =g >0ast— + o, and

A(d,q) = f;ogql ¢(59‘”)]dv + f_ ” |1 - ¢(e‘='")|dv

log q

This is a more general result than Jakimowski’s in [8], namely we donot suppose
here that ¢(x) is a monotonic function of x in [0, 1], but only that the conditions
of Theorem 1 are satisfied concerning f(x) = ¢(e™° ). The monotonicity of ¢(x)
clearly implies our assumptions.

ExaMPLE. (iv). Let B(x) be as in (2.13) and p(x) = e”¢ . Then if &’ = u,

—e—

n
e = p, we have

Ty(y) = C¥(u) as in (2.14)
T(n) = A(p) as in example (i)
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Now, by Theorem 1
lim |C®(u) — A(p)| S L - Alg,%)

t—> 0
whereu— + 0, p-> 1L u(l—p)—>qg>0if t > + o0,
0

1]

-
If g £ « the sign of absolute value in the second integral can be removed, since
e ">21—uforall u20. In particular, if a =g = 1,

lim [CV(u) — 4(p)| S L - 4,

where u — + o, p— 1, u(l — p)—> 1 as t » + oo, and an easy calculation yields
A =1-0C,

C being Euler’s constant,
Concerning transforms Ty(y) with a monotonic increasing function f(x) we shall
be able to prove the much more general result:

THEOREM 2. Let f(x) be an increasing function satisfying the conditions of
Theorem 1 and let s(x)= f(logx) be a real, or complex valued slowly oscillating
function for x >0 (i.e s(x) — s(y) =0, if x> + o0, xy~ ' = 1). Then for every
fixed q, — 00 < g < + 00,

(2.21) lim [f(n) = Ty(y)] < L* - 4%,
t
where y=y(f) > +o0,p=n(t)> + 00, y—y—>gast— + oo,

(2.22) L*=tm Tm [V
510 y2x+s-c0 y—Xx
and

(2.23) AF= f_qwﬁ(x)dx + f +00(1 — B(x))dx.

Moreover, the constant A,‘; in (2.21) is the best possible in the same sense as in
Theorem 1.

ReEMARK. It is well known, that if f(x) satisfies conditions of Theorem 1,
then s(x)=f (logx) is slowly oscillating and L* in (2.22) is < than Lin (2.4).
By (2.23), A} has the same value as A, by Theorem 1 for the special case
T.(n) = f(n). Thus, for increasing f(x) Theorem 2 is a more general result.

Proofs. In the proof we shall need the following modification of the lemma
of Agnew [9].
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LeMMA. Let H(t,x) be a real function of the variables

t,x(t>0; —0o<x< + ®)

satisfying the following conditions

4+
f |H(t,x)|dx exists for t>0,
-

lim | |H(t,x)|dx=0 for every c,

t— 0 -

and suppose
R + 0
lim |H(t, x)|dx =A< + 0.

2>+ 00J—0

Let g(x) be any function of the real variable x, (— o0 < x < + o0) satisfying
g(x)=0(1) for — o0 < x < + o0, and suppose

lim |g(x)| =L < + co.

x>+
Then for
+ 00
T@®) = f H(t, x)g(x)dx
we have
(2.24) lim |T(f)| S L- 4,

t—+ o0

and the constant A is the best possible in the sense that there exists a real function
g(x) with 0 < L < + oo such that in (2.24) both sides are equal.
The proof of the lemma is the same as the very similar lemma of Rajagopal [10].

Proof of Theorem 1. By (1.1) we have

T6) =T = [ 0d =) - py = )

by (2.3)

| ] ruauage-»-po - ).

By (2.2), (2.6) and (2.7) we may interchange the order of integrations and by
(2.5) we obtain

= S'@){B(y — u) — y(n — u)}du

- Q0

+

S (WH(t,u)du,
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with y = y(t), n = n(t). Now it is easy to check that H(t,u) satisfies the conditions
of the Lemma; thus we have

lim |T() ~ T[S L+ 4,,
10

where
+

A, = lim | By — u) = 3(n = u)| du,

{20 -—oC

and by (2.8) and Lebesgue’s well known theorem

- f |Bx) — 9(x — g dix.
- Q.E.D.

Proof of Theorem 2. First, by a slight modification of a theorem of R.
Schmidt [11], for all x, y satisfying |x — y| 2 6 > 0
(2.25) |fC) =W £ K5+ [x -y,

K being dependent only on J. Thus the lim defining L* in (2.22) certainly exists.
In order to prove our Theorem it is enough to show that (2.21) holds; the fact

that 4% is the best possible constant satisfying (2.21) follows from the remark

after Theorem 2. Let now be &> 0 given; define § >0, x, > 0 such, that for

xéxo,ygxo, Ix'_yl g&(by(222))

(2.26) [FG) = f | < @* +o)|x -y,

and for x = Xo, y Z Xo and | x — y| £ J (since f(logx) is slowly oscillating)

(2.27) [f) —f)] <e.

Now

fn) —Ty(y) = f . (f(m) =F(x))d(1 = B(y — x))

(228) X0 n—=94 n+d +©
-~ o0 X0 n—oé n+é

Let y,n > x4 + 0.
By (2.25)

L=o( [ w-»dt-po-» )

—0 {(n—y)(l — By — xo)) +j udp(u) }

- X0

and by (2.5) and (2.6) we obtain easily
(2.29) I, = o(1) as y— .



36 A. MEIR

By (2.26)
L] <(L* + s)f =0 - B = ) S (L* +9) f dﬁ(u) e

(2.30)
—@r [ - panas

In the same way

@.31) || < ( f_y—ﬂﬁ(u)du ) S (L* + o).
By (2.27)
y—nté
(2.32) |15 gef dp(u) < e.
y-n-a

Since ¢ > 0 was arbitrary we have by (2.28) — (2.32),ast— 00, y = 00, y ~ 1 =4,

Lim |f(n)— T()|SL*- 4,
=00 Q.E.D.

REFERENCES

1. Agnew, R.P., 1949, Abel transforms and partial sums of Tauberian series, Ann. of
Math., 50, 110-117.

2. Agnew, R.P., 1952, Integral transformations and Tauberian Constants, Trans. Amer.
Math. Soc., 72, 501-518.

3. Delange, H., 1950, Sur les théorémes inverses des procédées de sommation des séries
divergentes, Ann. Sci. Ecole Norm. Sup (3) 67, 99-160.

4. Garten, V., 1951, Uber Taubersche Konstanten bei Cesardschen Mittelbildung, Comm.
Math. Hely., 25, 311-335.

5. Hadwiger, H., 1944, Uber ein Distanztheorem bei der A-Limitierung, Comm. Math.
Hely., 16. 209-214,

6. Jakimovski, A., 1960, The sequence-to-function analogues to Haussdorff transformation,
Bull. Res. Counc. of Israel, 8F, 135-154.

7. Jakimovski, A., 1961, Tauberian Constants for Haussdorff transformations, Bull. Res.
Counc. of Israel, 9F, 175-184.

8. Jakimovski, A., 1962, Tauberian Constants for the [/, f (x)]-transformation, Pacific Journ.
of Math., 12, 567-576.

9. Meir, A., 1963, Tauberian Constants for a family of transformations, Annals of Math.,
(to appear).

10. Rajagopal, C.T., 1956, A generalization of Tauber’s theorem and some Tauberian
constants III, Comm. Math. Hely., 30 63-72.

11. Schmidt, R., 1925, Uber divergente Folgen und lineare Mittelbildungen, Math. Zeitsch.,
22, 89-152.

TuE HEBREW UNIVERSITY OF JERUSALEM



