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A B S T R A C T  

Tauberian constants and estimates are calculated for the difference of two 
linear transforms from the form (1.1) of the same function satisfying Taub- 
erian conditions. 

Applications for number-sequences, and connections with previous results 
are shown. 

1. Introduction. Denote by T(y )  (y > 0) some integral-transform of a function 
J (x )  ( - oo < x < + ~ )  of the form 

F f(x)d(1 (1.1) T(y)  - Tp(y) = - fl(y - x))  

where fl(x) is a function of bounded variation on - ~ < x < + oo. In addition 
to Tauberian theorems, which give information about lim~f(x) if limy T(y)  exists, 
it is possible to find estimates concerning [ Tp(y) - J ( x )  I even if neither the exis- 
tence of limy T(y )  nor that of lim~f(x) is assumed. Studies of such problems 
concerning number-sequences and the usual Abel-transform originated with the 
paper of  Hadwiger [5], concerning integral-transforms with Agnew [2], De- 
lunge [3], Rajagopal [10], Jakimowski [8]. In Section II of the present paper we 
shall obtain a simple proof  of  estimates of i Tp(y) - T~(~l) I where Tp and T~ are 
transforms satisfying certain general conditions, y and 17 tend to + oo with a 
connection on y - I/. Our result contains as special cases many known results. 

2. Tauberian Constants. The main result is the following: 
THEOREM 1. Let  f ( x )  ( - - ~  < x  < + oo) be a real or complex-valued,  

continuous,  a lmost  everywhere dif ferentiable func t ion  sat is fy ing 

(2.1) lim f ( x )  -- 0 
x . ~  - oO 

(2.2) f ' ( x )  = 0 ( 1 )  for - oo < x < + 

x 

(2.4) lim I f ' ( x )  I = L < + co. 
X-.-~ -b o0 
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Let fl(x) and y(x) be real functions of bounded variation over - oo < x < + 0% 
satisfying 

(2.5) lim fl(x)= lim ~,(x)=0, 
X - ~  - -  O0 X - ~  - -  O0 

/~(x) • L~ ( -  co, o) 
(2.6) 1 

[ ( 1  - f l (x))  e Lx(O, + co);  

lim f l ( x ) =  l i m  ~ , ( x ) =  1 
X ' ~  % O0 X"-~ -I- O0 

; y(x) e L 1 ( - co, 0) 

(1 --  ~(x) )  e LI (0 ,  + co) 

fo f f. (2.7) ld#(x) ldu < + oo, Idr(x) ldu < + co 
- - 0 0  - - Q O  O0 - - 0 0  

and let y = y ( t )  and r/=r/(t) be positive increasing function with limt_,~oy(t) = + co, 
limt~ooq(t) = + oo and 

(2.8) 

then  

(2.9) 

where 

(2.10) 

lim (y( t )  - ~l(t)) = q ,  - co < q < + co 
t ' - *  + O0 

li---m- [ Tp(y) - T~(n) ] < L -  A~ 
t ~ + o O  

and Aq is the best possible constant satisfying (2.9), since there exists a real function 
f ( x ) ,  with 0 < L < + co and such, that in (2.9) the equality sign holds. 

Before giving the proof we mention some particular examples. 

EXAMPLE (i). Let {Sk} ( k  > 1) (Sk = a l  + a2 + ... + ak) be a real or complex 
sequence satisfying k a  k = O(1), and define 

(2.11) f l ( x ) = e  - e - ~ ,  7(x)= {01 x~0X<0 

x - l og  n 
(2.12) f ( x ) = k = l a k  + a , + l l o g ( n  + l ) _ l o g n ,  log n < x < log(n + 1) 

If  we denote e " =  z, e-e-" = p, then it is easy to see that TT(q)= st,  1 + o(1) 
and Ttj(y ) = (1 - p) ~,kZ 1Skp k + 0(1). 

Thus we have by Theorem 1 

lim [st, l - A(p)] < L e - e - X d x  + _ e - e - x ) d  x 
t ~  -I- o o  - - l o g  
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where L--limk_.oo [ karl,  A(p) is the usual Abel- transform of  the series {Sk}, 
Z ~ + ~ ,  p --~ 1, Z(1 -- p) ~ q as t ~ + oo. This is an equivalent form of  a result 

o f  Agnew [7].  

EXAMPLE. (ii). Let  {Sk}, f (x) ,  )'(X) and L defined as in example (i). 
Let  for  0t > 0, 

x < o  
(2.13) fl(x) = 1 - e-~)~ x > 0 ;  

I f  we denote  d = u ,  e ~ = z ,  and f ( l og  x )  = s(x) we have 

T~,(r/) = s M + o(1) 

(2.14) 

f 
T A y )  = - x)'- 'dx - c(')(.) 

C(~)(u) being the C~sar6-transform of  order  0t o f  the function s(x). 
Now by Theorem 1 

li--m I st,  - c ( ' ) ( u ) ]  =< L "  A(~ ") 
t.-+ O0 

where ~-* + 0% u ~  + 0% ~u-* ~ q  > 0 ,  as t ~  + 0% and 

~--Iog /D+oO 
| / (1 - e-")*dx + |  (1 - (1 - e-~'):)dx if  q < 1 

[ f ; ( 1 - ( 1 - e - * ) ' ) d x  logq  + if q => 1 

This is a result analogous to a theorem of  V. Gar ten  [8] and A. Jakimowski  [9].  

EXAMPLE (iii). The  [J,f(x)]-transformations were defined in [6] as follows: 
Let  ~b(x) be a funct ion of  bounded  variat ion in [0 ,1] ,  ~b(0 + ) =  ~b(0)=0, 
q~(1-  ) =  qS(1)= 1. The [J,J(x)]-- transforms of  a sequence {s,} (n > 1) 

(s,, = a t  + ... + a,,) is 

= ~, Sk ---~! log ddp(u) (2.15) F,(x) k = 1 

_ e - v  I f  we denote  x = e", u = e , q~(u) = fl(v), we have 

f +Go ekv v 
(2.16) F,(x) = F,(e') = k=~tSk _ -Ere  -e d(l  - / ~ ( y  - v)) 

Now, if ka k = O(1), and B(x)l= ~ s rxkl k !)e-* is the usual Borel- transform of  a'Jk = 1 kk 1 

the sequence {Sk}, it is easy to show (see for  example my paper  [10]) that  
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(2.17) lim IB(x) - Stxl[ = 0 
x.-+ ÷ oO 

thus 
B(e ~) = O(v) as v ~ + oo. 

[March 

Therefore, if fl(v) satisfies the conditions of  Theorem 1, it follows by (2.7) that 

the integral 

f_+°°B(e~)d(1- fl(y - v)) 

is absolutely convergent, and thus we may write (2.16) in the equivalent form 

(2.18) F~(x) = f_~°°B(eO)d(1- / 3 ( y -  v)). 

Also, by (2.12) and (2.17), 

lim 
t,--+ + O0 

therefore, it is easily seen that 

(2.19) lim 
y ~ + O o  

where 

I B(e~) - f ( v )  I = 0 ; 

I F , (x)  - Tp(y) [ = 0, 

T , ( y )  = - B ( Y  - v ) ) .  

Now, if ?(x) is as in (2.11), e~= z, and L = limk-,+oo[ kak], by Theorem 1 and 
(2.19) 

(2.20) lim I st,l - Fc,(x) l <= L . A(Jp, q) 
t ~ + o 0  

where z --} + 0% x --} + o% zx-  1 _.} q > 0 as t --} + oo, and 

A(q~, q) = q~(¢e-~) I dv + [ 1 - q~(e -e-  ~)[ dv 
log q 

This is a more general result than Jakimowski's in [8], namely we do not suppose 
here that ~b(x) is a monotonic function of  x in [0,1],  but only that the conditions 
of  Theorem 1 are satisfied concerning fl(x) = ~b(e-e-x). The monotonicity of q~(x) 

clearly implies our assumptions. 

EXAMPLE.  ( i v ) .  

e - e -  ~ = p ,  w e  have 
Let fl(x) be as in (2.13) and 7(x) = e -"-x. Then if e y = u, 

Tp(y) = CC~)(u) as in (2.14) 

T~(tl) = A(p) as in example (i) 
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Now, by Theorem 1 

lim I C~)(u) - A(p) l < L .  A(q,~) 
t.-+O0 

where u ~  + m, p ~  1, u ( 1 -  p ) ~ q  > 0  i f t ~  + oo, 

n0 :0o0 
a(q,  = |, e_qe-x ex  + I(1 - e-X)" - e-qe- l ex .  

d 

I f  q < ~ the sign of absolute value in the second integral can be removed, since 

e - "  > 1 - u for all u > 0. In particular, if e = q = l ,  

lim I C(1)(u) - A(p) I <= L"  .,11 
t ~ a O  

where u --* + m, p ~ 1, u(1 - p) --. 1 as t ~ + m,  and an easy calculation yields 

A I = I - - C ,  

(2.22) 

and 

C being Euler 's  constant. 

Concerning transforms Tp(y) with a monotonic increasing function fl(x) we shall 

be able to prove the much more general result: 

THEOREM 2. Let fl(x) be an increasing function satisfying the conditions of 
Theorem 1 and let s(x)= f ( logx)  be a real, or complex valued slowly oscillating 

function for x > 0 (i.e s(x) - s (y )~O,  if x ~ + m, xy -1 -~ 1). Then for every 

fixed q, - ~ < q < + o% 

(2.21) l im If(t/) - Z#(y)] _<_ L * .  Aq*, 
t~O0 

where y = y(t) -~ + o% ~/= r/(t) ~ + m, y - r / ~  q as t ~ + m,  

L* = lim l~n~ [ f ( y )  - f ( x )  I 
~,o ~.~_x+~-.oo y - x 

(2.23) A* = [3(x)dx + (1 - ~(x))dx. 

Moreover,  the constant A* in (2.21) is the best possible in the same sense as in 
Theorem 1. 

REMARK. I t  is well known, that if f ( x )  satisfies conditions of  Theorem 1, 

then s ( x ) = f ( l o g x )  is slowly oscillating and L* in (2.22)is  < than Lin(2.4) .  

By (2.23), A* has the same value as Aq by Theorem 1 for the special case 

Te(~/) = f(~/). Thus, for increasing B(x) Theorem 2 is a more general result. 

Proofs. In the p roof  we shall need the following modification of  the lemma 

of Agnew [9]. 
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LEMMA. Let H(t,x) be a real function of the variables 

t ,x( t  > O; - oo < x < +oo)  

satisfying the following conditions 

:_~°°[H(t ,x)[dx exists f o r t >  0, 

L lira I H(t, x) I dx = 0 for every c, 
t"-~ o0 

and suppose 

~m [+°°ln(t,x)ldx=A< +~.  

Let g(x) be any function of  the real variable x, ( - ov < x < + oo) satisfying 
g(x) = O(1) for - oo < x < + 0% and suppose 

Then for 

we have 

(2.24) 

li--m ]g(x) I = L < + oo. 
X"-~ + O0 

T(t) = f +°°H(t,x)g(x) 

lim [ T(t)[ =< L .  A, 
t--* -I- O0 

and the constant A is the best possible in the sense that there exists a real function 
g(x) with 0 < L < + ov such that in (2.24) both sides are equal. 

The proof  of the lemma is the same as the very similar lemma of Rajagopal [10]. 

Proof of Theorem 1. By (1.1) we have 

f _+: f  ( x )d {'y(tl Tp(y) - Tr(rl) = - x) - fl(y - x)}; 

by (2.3) 

+o0 ~ x  

= L J  
By (2.2), (2.6) and (2.7) we may interchange the order of integrations and by 
(2.5) we obtain 

:? - _ f ' ( u ) n ( t , u ) d u ,  
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with y = y(t) ,  t /=  r/(t). Now it is easy to check that H(t ,  u)  satisfies the conditions 
of  the Lemma; thus we have 

lim ] Tp(y) -- T~(t/) ] < L .  Aq ,  
I-** O0 

where 

A q =  t--~oli--m f _ + ° ° [ [ 3 ( y - u ) - 7 ( ~ l - u ) l d u ,  

and by (2.8) and Lebesgue's well known theorem 

= ]fl(x) - ~,(x - q)  l d x .  
- - 0 0  Q.E.D. 

P r o o f  o f  Theorem 2. First, by a slight modification of a theorem of R. 
Schmidt [11], for all x ,y  satisfying Ix - y] __> c~ > 0 

(2.25) If(x) - f ( y )  ] < K~.[ x - y I, 

K being dependent only on 6. Thus the lim defining L* in (2.22) certainly exists. 
In order to prove our Theorem it is enough to show that (2.21) holds; the fact 

that A* is the best possible constant satisfying (2.21) follows from the remark 
after Theorem 2. Let now be e > 0 given; define 6 > 0, x o > 0 such, that for 
x > Xo, Y _>- Xo, Ix - Y] => 6 (by (2.22)) 

(2.26) If(x) - f ( y )  [ < (L* + e) [ x - y l, 

and for x > Xo, y > Xo and Ix - y[ < 6 (since f ( log x) is slowly oscillating) 

(2.27) If(x) - - f (y )  [ < s. 

Now 

f ( t l )  - Tp(y) = ( f ( t l )  - f ( x ) ) d ( 1  - f l(y - x))  
o o  

(2.28) 

E r ;  f) = + axo Jq-,~ +~= It  + I 2  + I 3  + 1 4  

Let y , q  > x o + 6. 

By (2.25) 

= 0  ( ~ / - y ) ( 1 - f l ( y  Xo))+ udf l (u)  
- -XO 

and by (2.5) and (2.6) we obtain easily 

(2.29) I t = o(1) as y -~ oo. 
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By (2.26) 

112 [ < (L* + e ( t / -  xld(1 - f l(y - x l )  < (L* + e dfl(u dt  
o v y - - T I  ,J y - T i  

(2.30) 

In  the same way 

(2.31) 

By (2.27) 

= (L* + e)" (1 - fl(u))du 

( f ) ]14] _-< • (L* + e). 

/* y--t/+d 

(2.32) 1131 z dB(u)-< 

Since e > 0 was arbitrary we have by (2.28) - (2.32), as t -~ o% y ~ oo, y - t/-~q, 

li--m If(t/) - Ta(y) [ < L * .  A t 
t-~O0 Q . E . D .  
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